? FACULTAD
‘ DE INGENIERIA

Universidad de Buenos Aires

Wolfenstein 3D
Manual Técnico

|75.42] Taller de programacion
Segundo cuatrimestre de 2020
Repositorio en Github
Grupo 8

BERTOLOTTO, Francisco | fbertolotto@fi.uba.ar | 102671

LOPEZ NUNEZ, Agustin | alopezn@fi.uba.ar 101826

SANTONI, Mauro msantoni@fi.uba.ar | 102654

FERNANDEZ, Andrés andyfer@fi.uba.ar 102220

https://github.com/mjsantoni/taller_wolfenstein3D/

Wolfenstein - 3D Taller de programacion - FIUBA

Indice
1. Requerimientos de software 2
1.1. Bibliotecas utilizadas L 2
1.1.1. Bibliotecas basicas L 2
1.1.2. SDL2 y sus derivados de imagen, sonido y texto 2
1.1.3. BotconIA-Lua e 2
1.1.4. YAML o e 2
1.1.5. Editor y menti del Cliente - QT5 2
2. Compilaciéon y ejecuciéon 2
2.1, SErVero e e e e e 3
2.1.1. Instalacion y ejecucion mediante paquetedeb oo oL 3
2.1.2. Instalacién y ejecucién mediante compilaciéon manual 3
2.2, Cliente oo e 4
2.2.1. Instalacién y ejecuciéon mediante paquetedebo L. 4
2.2.2. Instalacion y ejecucion mediante compilacion manual oL 4
2.3. Editor 5
2.3.1. Instalacién y ejecucién mediante paquetedeb)
2.3.2. Instalacién y ejecucién mediante compilaciéon manual 6
2.4. Formato de los mapas YAML 7
3. Empaquetado de los médulos 7
310 Servidor 8
3.2, Cliente e e 8
3.3. Editor e e e 9
4. Servidor 9
4.1. Manejo de multiples partidas Lo oL 10
4.2. Comunicaciéon con clientes 14
4.2.1. Protocolo de envio de informacién oL oL 16
4.3. Logica de Disparoo e 18
4.4. Logica de apertura de puertas/paredes falsas, 18
4.5. Loégica del pasodel tiempo Lo 18
5. Cliente 19
5.1. Threads y comunicaciéon con el servidor, 22
5.2. Renderizacién en pantalla,o Lo 22
5.2.1. Introduccién e 22
5.2.2. Proceso de renderizacion del entorno del jugador 22
5.2.3. Proceso de renderizaciéon de objetos en el mapa 24
5.2.4. Renderizacién del arma del jugador L 24
5.2.5. Uldeljugador e 25
5.3. Generacién de eventos y procesamiento de cambios 25
5.3.1. Generacion de eventos 25
5.3.2. Procesamiento de cambioso Lo oL 26
5.4. Estadosdel juego L L 29
5.5. Renderizado del audio L L Lo 29

Wolfenstein - 3D Taller de programacion - FIUBA

1. Requerimientos de software

1.1. Bibliotecas utilizadas

Importante: notar que las dependencias necesarias se instalan automaticamente si el servidor
es instalado mediante el paquete .deb.

1.1.1. Bibliotecas basicas

Para compilar todos los modulos, es necesario instalar GCC, Make (ambas incluidas en el
paquete build-essential) y CMake. Cada una de estas puede instalarse mediante:

$ sudo apt-get install build-essential
$ sudo apt-get install cmake

1.1.2. SDL2 y sus derivados de imagen, sonido y texto

$ sudo apt-get install libsdl2-dev libsdl2-image-dev libsdl2-ttf-dev
libsdl2-mixer-dev

1.1.3. Bot con IA - Lua

$ sudo apt-get install luab5.3 libluab.3-dev

1.1.4. YAML

Adjuntado dentro del repositorio de manera que permita su facil ejecucion y evite la necesidad
de instalarla ya que debe ser instalada de manera muy especifica generando problemas innecesarios.

1.1.5. Editor y ment del Cliente - QT5

3$ sudo apt-get install qt5-default

2. Compilacién y ejecucion

Todos los médulos poseen dos formas de instalacion, manual o por paquete .deb. Esto permite
versatilidad a la hora de querer una instalaciéon més simple o mas facil de modificar. A continuaciéon
se demarcan las ventajas y desventajas de cada forma de instalacion.

Tanto los mapas como el archivo de configuracién son tomados por cada médulo en el momento
de su compilacion, de manera que para cada tipo de instalacién suceden cosas distintas. En los
anexos de instalacion se especificara cuales son los pasos a seguir para instalar los modulos.

» Instalacién manual: si se desea modificar los mapas o la configuracion se debe editar en el
caso de los mapas los de la carpeta maps en la raiz del repositorio y en el caso del archivo de
configuraciones se debe editar el archivo config.yaml dentro de la carpeta config en la raiz
del repositorio. Luego, al ejecutar nuevamente el comando make run se volvera a compilar
el modulo respectivo contemplando el cambio en mapa o configuraciéon. De esta manera
permite recompilar contemplando nuevos cambios sin ninguna acciéon extra. Es importante

Wolfenstein - 3D Taller de programacion - FIUBA

2.1.

notar también que estos cambios requieren recompilacion tanto del servidor como del cliente
ya que ambos toman los mapas y la configuracion en su ejecucion.

Instalacién mediante paquete deb: en este caso la recompilaciéon no sucedera ya que el
codigo esta instalado en la maquina. Como los mapas y la configuracion se cargan s6lamente
al ejecutar el juego, para cambiar alguna configuracién se debe hacerlo tanto al servidor
como al cliente en sus respectivas carpetas de maps o config en
/usr/local/share/wolfenstein3d-<modulo> siendo modulo client o server.

Server

Como fue descripto previamente, existen dos maneras de instalar el servidor, una es mediante
el paquete .deb obtenido a través del repositorio o bien compilando el cdédigo fuente manualmente.

2.1.1. Instalacién y ejecuciéon mediante paquete deb

Para esto se debe descargar el paquete de instalacion del siguiente link.
Una vez descargado los pasos a seguir son los siguientes:

Ingresar a la carpeta donde se fue descargado el paquete.

Ejecutar el siguiente comando:

sudo apt install ./wolfenstein3d-server_1.0.deb

Y esto concluye la instalacion. Si todo salié bien, Wolfenstein3D-Server puede ejecutarse de la
siguiente manera:

$

wolfenstein3d-server <puerto>

2.1.2. Instalacién y ejecucién mediante compilacién manual

Se proveen makefiles oportunos para facilitar la instalacion y posterior ejecucion del juego.
Los pasos a seguir son:

Clonar el repositorio mediante:

$ git clone https://github.com/mjsantoni/taller_wolfenstein3D.git]

Esto descargara el repositorio en la carpeta taller wolfenstein3D. Ingresar a la carpeta y
luego a la carpeta del servidor.

$ cd taller_wolfenstein3D
$ cd server_src

Una vez dentro ejecutar el makefile que permitird compilar el programa para su posterior
ejecucion

$ make

https://github.com/mjsantoni/taller_wolfenstein3D/releases/download/1.0/wolfenstein3d-server_1.0.deb

Wolfenstein - 3D Taller de programacion - FIUBA

= Para ejecutar el servidor se podra hacer de dos maneras. La primera es:

$ make run <puerto>]

= La segunda es ingresando a la carpeta build y corriendo el ejecutable manualmente:

$ cd build
$./wolfenstein3d-server <puerto>

Si se ejecuta de la primer forma, el programa se recompilard cada vez de ser necesario. Si se
ejecuta de la segunda forma y se quiere volver a compilar se deberé ejecutar dentro de la carpeta
del servidor:

$ make build]

El makefile incluido en esta carpeta permite también eliminar los archivos necesarios para la
ejecucion y retornar la carpeta a su estado inicial mediante

$ make clean-all]

2.2. Cliente

Como fue descripto previamente, existen dos maneras de instalar el servidor, una es mediante
el paquete .deb obtenido a través del repositorio o bien compilando el codigo fuente manualmente.
2.2.1. Instalacién y ejecuciéon mediante paquete deb

Instalar el cliente mediante el paquete .deb es la manera mas simple y rapida.
Para esto se debe descargar el paquete de instalacion del siguiente link.
Una vez descargado los pasos a seguir son los siguientes:

= Ingresar a la carpeta donde se fue descargado el paquete.

= Ejecutar el siguiente comando:

$ sudo apt install ./wolfenstein3d-client_1.0.deb]

Y esto concluye la instalacion. Si todo salié bien, Wolfenstein3D-Client puede ejecutarse de la
siguiente manera:

$ wolfenstein3d-client

2.2.2. Instalacién y ejecuciéon mediante compilacién manual

Se proveen makefiles oportunos para facilitar la instalacion y posterior ejecuciéon del juego.
Los pasos a seguir son:

https://github.com/mjsantoni/taller_wolfenstein3D/releases/download/1.0/wolfenstein3d-client_1.0.deb

Wolfenstein - 3D Taller de programacion - FIUBA

= Clonar el repositorio mediante:

$ git clone https://github.com/mjsantoni/taller_wolfenstein3D.git]

» Esto descargara el repositorio en la carpeta taller wolfenstein3D. Ingresar a la carpeta y
luego a la carpeta del cliente.

$ cd taller_wolfenstein3D
$ cd client_src

= Una vez dentro ejecutar el makefile que permitird compilar el programa para su posterior
ejecucion

$ make

= Para ejecutar el cliente se podra hacer de dos maneras. La primera es:

$ make run]

= La segunda es ingresando a la carpeta build y corriendo el ejecutable manualmente:

$ cd build
$./wolfenstein3d-client

Si se ejecuta de la primer forma, el programa se recompilara cada vez de ser necesario. Si se
ejecuta de la segunda forma y se quiere volver a compilar se deberé ejecutar dentro de la carpeta
del cliente:

$ make build]

El makefile incluido en esta carpeta permite también eliminar los archivos necesarios para la
ejecucion y retornar la carpeta a su estado inicial mediante

$ make clean-all

2.3. Editor

Como fue descripto previamente, existen dos maneras de instalar el servidor, una es mediante
el paquete .deb obtenido a través del repositorio o bien compilando el codigo fuente manualmente.
2.3.1. Instalacién y ejecucion mediante paquete deb

Instalar el editor mediante el paquete .deb es la manera més simple y rapida.
Para esto se debe descargar el paquete de instalacion del siguiente link.
Una vez descargado los pasos a seguir son los siguientes:

= Ingresar a la carpeta donde se fue descargado el paquete.

https://github.com/mjsantoni/taller_wolfenstein3D/releases/download/1.0/wolfenstein3d-editor_1.0.deb

Wolfenstein - 3D Taller de programacion - FIUBA

= Ejecutar el siguiente comando:

$ sudo apt install ./wolfenstein3d-editor_1.0.deb

Y esto concluye la instalaciéon. Si todo salié bien, Wolfenstein3D-Editor puede ejecutarse de la
siguiente manera:

$ wolfenstein3d-editor

2.3.2. Instalacién y ejecucion mediante compilacién manual

Se proveen makefiles oportunos para facilitar la instalacion y posterior ejecucion del juego.
Los pasos a seguir son:

= Clonar el repositorio mediante:

$ git clone https://github.com/mjsantoni/taller_wolfenstein3D.git]

= Esto descargara el repositorio en la carpeta taller wolfenstein3D. Ingresar a la carpeta y
luego a la carpeta del editor.

$ cd taller_wolfenstein3D
$ cd client_src

= Una vez dentro ejecutar el makefile que permitird compilar el programa para su posterior
ejecucion

$ make

= Para ejecutar el editor se podra hacer de dos maneras. La primera es:

$ make run

= La segunda es ingresando a la carpeta build y corriendo el ejecutable manualmente:

$ cd build
$./wolfenstein3d-editor

Si se ejecuta de la primer forma, el programa se recompilard cada vez de ser necesario. Si se
ejecuta de la segunda forma y se quiere volver a compilar se deberé ejecutar dentro de la carpeta
del editor:

$ make build

El makefile incluido en esta carpeta permite también eliminar los archivos necesarios para la
ejecucion y retornar la carpeta a su estado inicial mediante

Wolfenstein - 3D

Taller de programacion - FIUBA

$ make clean-all

2.4.

Formato de los mapas YAML

Para el correcto funcionamiento de los mapas es necesario que sigan este lineamiento:

dimensions:
width: 25
height: 25

scenarios:
wood_wall: []
rock_wall: [[0, 0]]
stone_wall: [[4, 2],
blue_wall: []
barrel: []
locked_door: [[5, 20],
unlocked_door: []
fake_wall: [[4, 1], [13, 10]]
table: [[23, 171, [23, 23]]

items:
machine_gun: [[1, 1],
rpg_gun: [[3, 21]]
chain_gun: [[3, 9], [12, 19],
bullets: [[2, 5], [2, 14], [9, 16],
chest: []

[[1, 21]1]
crown: [[1, 20],
goblet: []
food: []
key: [[4, 12], [5, 51, [22, 23],
medkit: [[4, 23], [15, 14],
water_puddle: [[21, 17], [22, 16],

players:

0: [[1, 1711

[[8, 13]1]

[[14, 1]1]

[[16, 20]]

(4, 311

[6, 61, [19,

[11, 3], [13,
cross:

[1, 22]]

1:
2:
3:

= dimensions: El tamano del mapa.

1011

151, [16, 71,

(16, 1711

(10, 101, [11, 22],

(23, 111
[21, 23],

(22, 17]1]
[22, 18]]

= scenarios: Todos los obejtos bloqueantes del mapa.

= items: Items del mapa, armas, tesoros, paquetes de vida.

= players: Posiciones de los spawns de cada player.

3.

Empaquetado de los médulos

(21, 711

(16, 4],

[19, 217,

(20, 311

Dentro de cada carpeta de cada médulo hay directorios llamados package_ generation dentro
del cual se encuentra un script de Makefile que permite generar un paquete .deb de manera simple
y rapida para ser instalado. Este paquete se genera con todo lo necesario para correr el juego. El

Wolfenstein - 3D Taller de programacion - FIUBA

paquete generado instala el binario ejecutable en /usr/local/bin y sus respectivos recursos ne-
cesarios para visualizarlo correctamente en /usr/local/share/wolfenstein3d-<modulo> siendo
el modulo client, server o editor.

Para generar los paquetes se debe primero clonar el repositorio:

$ git clone https://github.com/mjsantoni/taller_wolfenstein3D.git]

3.1. Servidor

Para generar el paquete del servidor se debera hacer lo siguiente, parado en la carpeta raiz del
repositorio ya clonado:

$ cd server_src/package_generation
$ make

Para luego instalar el paquete:

$ make install

Si se desea generar e instalar el paquete directamente con un solo comando:

$ make install-all

Si se desea desinstalar el paquete ya instalado:

$ make remove

3.2. Cliente

Para generar el paquete del cliente se debera hacer lo siguiente, parado en la carpeta raiz del
repositorio ya clonado:

$ cd client_src/package_generation
$ make

Para luego instalar el paquete:

$ make install

Si se desea generar e instalar el paquete directamente con un solo comando:

$ make install-all

Si se desea desinstalar el paquete ya instalado:

$ make remove

Wolfenstein - 3D Taller de programacion - FIUBA

3.3. Editor

Para generar el paquete del editor se debera hacer lo siguiente, parado en la carpeta raiz del
repositorio ya clonado:

$ cd editor_src/package_generation
$ make

Para luego instalar el paquete:

$ make install

Si se desea generar e instalar el paquete directamente con un solo comando:

$ make install-all

Si se desea desinstalar el paquete ya instalado:

$ make remove

4. Servidor

El servidor fue construido para funcionar de forma concurrente para varios jugadores que
estuviesen conectados en multiples partidas al mismo tiempo. Para esto se construyé un moédulo
principal que maneja el flujo general de la partida y procesamiento de eventos, delegando responsa-
bilidades a otras clases. El sistema de comunicacion con los clientes se delega a un ClientsManager.
Se utiliza un hilo receptor y un hilo emisor para cada cliente, asi como también un hilo por cada
bot para permitir completa concurrencia entre jugadores. El servidor principal que acepta clientes
corre en un hilo aparte de manera que pueda aceptar clientes y generar partidas sin influir en las
demés. A continuacion se muestra un gréafico que explica estas relaciones entre hilos demarcados
con lineas punteadas.

Wolfenstein - 3D Taller de programacion - FIUBA

A= = o = =

/

——— =

send

recv

socket socket
ClientUpdater ClientHandler
BlockingChangeQueue BRI

- EE EE BN B BN B B BN B B B Ee
 Em o o Em B B B B B B

- s mm ==

e —— —

-~ o=

= mm mm o mm o Em Em o Em Em Mm Em o e

’
s r iE 1
SharedEventQueue
I 1aredEventQueu |
1 1
1 Change 1
1 1
— | - N =
| 1 | 11 1
1 1 1 LuaBot 11 LuaBot 1
Game Change: BotsManager
I 1 1 L L
LuaEngine LuaEngine
1 1 1 11 1
! A 1 file.lua 11 file.lua 1
\ ! I 11 1

e Nmmm? N

Diagrama general de threads y flujo del servidor

4.1. Manejo de multiples partidas

Para el correcto funcionamiento de las diferentes partidas se dividio la logica en varias clases.

= Server: Esta clase se encarga de aceptar a los nuevos clientes y delegarlos al ServerMe-
nuHandler. Para asi poder seguir atendiendo clientes mientras los demas van optando por
crear o unirse.

s ServerMenuHandler: Maneja la comunicacién con el cliente, previo al juego en si. En
base a las decisiones que va tomando un cliente, el Server envia una respuesta acorde; por
ejemplo en el caso de que el cliente desee unirse a las partidas existentes, es importante
enviarle cuales estan disponibles. En caso de que decida crear una partida; esta clase crea
un nuevo GameHandler y lo guarda en la clase de Matches.

= Matches: Clase contenedora de GameHandlers, posee todas las partidas en curso y se en-
carga de que el acceso a las mismas sea de forma ordenada a traves de los multiples threads.

= GameHandler: Clase principal de una partida. Cuando un cliente decide crear una partida
nueva, lo que hace es instanciar un nuevo GameHandler, en el cae la responsabilidad de
ir agregando a los nuevos clientes que llegan por el join, crear las clases que facilitaran la
comunicacion entre ellos y posteriormente ejecutar el "game-cycle", que es procesar eventos
de los clientes, generar los cambios y enviarselos a cada uno de ellos. Esto se repite hasta
que termine la partida, ya sea por tiempo o por que un jugador logro la victoria.

10

Wolfenstein - 3D Taller de programacion - FIUBA

= EventProcessor: Clase que procesa los diferentes eventos recibidos por el GameHandler; es
el encargado de traducir el evento a acciones; luego pasara dichas acciones al juego principal
y en funcion de las respuestas, generara mas cambios o no de los que obtuvo.

= Game: Esta clase realiza las acciones propias del juego que se le piden, ya sea mover un
jugador, hacer que un jugador dispare, intentar abrir una puerta, etc. Luego, produce los
cambios y los devuelve. En rasgos generales es un contenedor del estado completo del juego,
el cual se ve modificado tinicamente cuando se le pide realizar una accién.

= Map: Clase que encapsula la logica del mapa, posee todos los items y posiciones de los
jugadores. Para facilitar el acceso se utiliza una clase Coordinate, que simularia un par
(x,y); esto nos permite definir métodos propios que nos facilitan otras operaciones.

11

Wolfenstein - 3D

Taller de programacion - FIUBA

SenverMenuHandlers

&Matches

* MetworkConnection skt

1

Server

NetworkAcceptor sk

h 4

int createGame()

hool joinGamef)

int createGame()
int createGame()

bool joinGame()

1

¥

Matches

void addNewMatch()
void sendGames()

bool canJoinPlayer()

k. |

*
4
GameHandler
bool alive
bool can_join_player
EventProcessor void addNewPlayer()
AGams void notifyClients()
process() void addBots()
void sendTops()
void endGame()
h 4 ¥ v
BotsManager ClientsManager SharedQueue<Event>
&SharedQueue<Event> queue<Event=
void addBot() void addNewPlayer() pop()
vioid sendMapToBot() vioid notifyClients() push()

void releaseBots()

Game

void KillPlayers()

v

LuaBot

&Player

&5SharedQueue<Event=

void updatePosition()

void cleanMap() 1
void closesTarget()

void processEvents() ¥

void pushEvents()

1

*
h A

Client

MetworkConnection sk

void update()

map<doors_to_close>
set<players_ready>

int players_alive

int game_duration

int min_players_in_lobby
int max_players

&BotsManager

connectPlayer()
movePlayer()
shoot()
openDoor()
rotate()
changeGun()
passTime()
addbot()

realeaseBots()

Diagrama de clases de la estructura general de una partida.

12

Wolfenstein - 3D Taller de programacion - FIUBA

Game

map<doors_to_close>
int players_alive

int game._duration

int max_players.
Map

&BotsManager
int global_id

connectPlayer() int max_players

Bl ShootHandler

mavai!ayeil) vector<player_positions>

shoot()) ’ ColissionHandler &Map
unordered_set<items_positions> Player

openDoor() &Map intid shoot()
putPositionableAt() int move size .

rotate() . 0 o double angle hitAtPos()

ayer|

changeGun() int safe_distance playersinArea()
getBlockingltemnAL() changeGun()

passTime() moveToPosition() shootRegularGun()
getPositionableAt{) dieAndRespawn()

addbot() getCloseltems() shootRPG()
erasePositionableAt() getDropsFromDeath()

realeaseBots() getCloseBlocking() travelAndExplodeAlIRPGS()
removePlayer() isDead()

l l l l

BlockingltemHandler HitHandler PickUpHandler ScoreHandler DropHandler
&Map &ScoreHandler unordered_map<kills> &Map
openDoor() processHit() pickUp() upodgied; magsbulefe?. processDrops()
pushWallf) unordered_map<points>

addKill)
addBulletsShot()

addTreasurePoints()

getTop()

Detalle mas especifico de la clase Game.

A continuacién se visualiza un diagrama que demuestra el flujo que sucede al crear una nueva
partida.

13

Wolfenstein - 3D Taller de programacion - FIUBA

Creacion de juego nuevo

I
I
! ! ! <create>
:- ---------- :' -------- A SharedQueue[Event]
| |
| I
I
I
|

I
I
I
[I
[I
[| I
| -2 1 |
| I | I
| addNewPlayer(id, skt} N |
‘ T T »; I
‘ | i I
! | I I
‘ I I I
| I I I
I | I
! | | I
‘ | I I
‘ | i I
‘ I I I
‘ I I I
‘ | I I
! | | I
‘ | i I
‘ | | pl
} | | I I I I I
| | | | | | | NetworkConnection: Change(ADD_PLAYER)
| I | | I I T >
! | I I | I I '
| | | 1 | | 1 NetworkConnection: sendMap()
! I I | | I I [v
} I | | I popl) | I |
I T T T T T -
‘ | I I I I | I
! [P Lo Jo Lo _Beent [o J
| | I |
| I i |
| I | |
| | I I
| I I
[. , 1

Creacion de juego nuevo

4.2. Comunicacién con clientes

El GameHandler posee ademas un ClientsManager que es el encargado de poseer el manejo de
clientes y sus comunicaciones. Este ClientsManager posee un vector de Client alocados en el heap
que permite abstraer la logica del envio y recepcion de datos. La clase Client almacena:

= ClientHandler: clase que corre en un thread aparte y es la encargada de recibir los eventos
generados por el cliente conectado.

= ClientUpdater: clase que corre en un thread aparte y es la encargada de enviar los cambios
producidos en el juego al cliente conectado.

» El socket de la conexion.

14

Wolfenstein - 3D Taller de programacion - FIUBA

ClientsManager

void addNewPlayer()
void notifyClients()

void KillPlayers()
1

&

h 4
Client

MNetworkConnection sk

v v

void update()

ClientUpdater ClientHandler
int player_id int player_id
ENetworkConnection &NetworkConnection

void update()

¥ ¥
BlockingQueue<Change> EventFactory
bool is_closed &SharedQueue<Event=
qane=Capge> void createAndPushFromBytes()
pop()
push()
close()

Diagrama de clases del apartado cliente

A continuacion se evidencia el flujo de envio de cambios hacia los clientes, cuyo encargado es
el ClientUpdater.

15

Wolfenstein - 3D Taller de programacion - FIUBA

Secuencia de envio de cambio

GameHandler ClientsiManager Client ClientUpdater BlockingQueue[Change] NetworkConnection

I I I
|

notifyClients(Change)

o
1
L

I
| |
| |
| |
, .

loop [All Clients] i i
| | |
| update(change) _| |
|
|

l update(change)

push(change)

pop()

H.---?@@f____4

sendMsg(change serialize())
I

I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
| _l
[=1
| |
| |
.

Envio de cambios

4.2.1. Protocolo de envio de informaciéon

El cliente al presionar una tecla genera un Event, un evento, este paquete generado posea 3
valores clave, el ID del evento, el ID del jugador y un valor. Este tltimo es utilizado en los casos
donde existen méas de una alternativa, por ejemplo rotar la cAmara, que puede ser para la izquierda
o la derecha; entonces en ese campo se carga la direccion.

El servidor al procesar los eventos, obtiene un Change (un cambio); similar al evento, esta
clase posee 4 campos claves; el id del cambio, el id del jugador y a diferencia del evento en este
caso obtenemos 2 campos de valores. Ahora necesitamos 2 en vez de 1 por que al tener un mapa
bidimensional, es necesario mandar una coordenada (x, y) cuando alguien se mueve, se elimina un
item del suelo o se modifica alguna pared/puerta.

Para facilitar el envio, ambas clases poseen un método de serializacion. Esto no es mas que
tomar los valores ordenados y armar una cadena de char en donde estos valores estan separados
por un ’/’.

Lista de eventos (se encuentra en include/common/events.h):

#define INVALID 0
#define CONNECT_PLAYER 1
#define MOVE_PLAYER 2
#define SHOOT 3

#define OPEN_DUOOR 4
#define PUSH_WALL 5
#define TURN_CAMERA 6
#define CHANGE_GUN 7
#define PLAYER_READY 8

//VALORES PARA EVENTOS
#define MOVE_LEFT 0
#define MOVE_RIGHT 1
#define MOVE_UP 2
#define MOVE_DOWN 3

16

Wolfenstein - 3D Taller de programaciéon - FIUBA

#define CAMERA_LEFT 1
#define CAMERA_RIGHT (-1)

Lista de cambios (se encuentra en include/common/changes.h):

#define INVALID 0

#define REMOVE_POSITIONABLE 1
#define MOVE_PLAYER 2

#define CHANGE_POINTS 3

#define CHANGE_HP 4

#define CHANGE_AMMO 5

#define CHANGE_WEAPON 6

#define CHANGE_KEY 7

#define KILL_PLAYER 8

#define RESPAWN_PLAYER 9

#define ADD_PLAYER 10

#define ADD_BLOOD_PUDDLE_AT 11
#define ADD_BULLETS_AT 12

#define ADD_KEY_AT 13

#define ADD_MACHINE_GUN_AT 14
#define ADD_CHAIN_GUN_AT 15
#define ADD_RPG_GUN_AT 16

#define ADD_UNLOCKED_DOOR 17
#define RPG_MOVE_TO 18

#define RPG_EXPLODE_AT 19

#define MAP_INITIALIZER 20

#define TOP_KILLER 21

#define TOP_SHOOTER 22

#define TOP_SCORER 23

#define TOTAL_PLAYERS_CONNECTED 24
#define GAME_START 25

#define GAME_OVER 26

#define GAME_OVER_NETWORK_ERROR 27
// CAMBIOS AUTO GENERADOS POR EL CLIENTE
#define CL_UPDATE_DIRECTION 28

Entonces, si el cliente apretara la tecla espacio o el click izquierdo y fuera el jugador 1, el evento
generado seria: 3/1/0 El servidor al procesar este evento (suponiendo que no le pego a nadie y
gasto una bala) devolveria: 5/1/-1/0

17

Wolfenstein - 3D Taller de programacion - FIUBA

4.3. Loégica de Disparo

Secuencia de disparo

GameHandler EventProcessor | Game | ShootHandler | HitHandler | ClientsManager
[I T [I
| | I |
| process(shoot_event) _| I |

I |
! shoot() II :
| |
I shoot() |
¥
I
alt [Has RPG]

|

| shootRpg()

=<create>

Hit, vector<Change> _: |

processHit(Hit, vector&<Change=)
I
|
|
|

notifyClients(vector<Change>)

Y

| - ECioreChange>
|

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
-
gl
I
I
!

PE—— __.I_____:____________________________

Disparo

4.4. Loégica de apertura de puertas/paredes falsas

A partir de un evento generado por el cliente, ya sea por presionar la 'E’ (abrir puerta) o
la 'F’ (empujar pared falsa) se procesa el cambio a través de la clase Game con su respectiva
clase encargada de realizar la ldgica de obtencién de la puerta o pared cercana que esté en dngulo
visible por el jugador para luego removerlas del mapa. En el caso de la pared ésta desaparece
completamente, mientras que la puerta vuelve a colocarse en el mapa luego de cierto paso del
tiempo generando su cierre, ésta estard siempre desbloqueada. Las puertas se cierran y pasan a
estar desbloqueadas por dos motivos: la puerta cerrada fue abierta con una llave lo que genera
que pase a quedar desbloqueada o la puerta ya estaba desbloqueada y fue abierta sin necesidad
de una llave.

4.5. Logica del paso del tiempo

Cada cierta cantidad de milisegundos, se genera un "paso del tiempo", esto implica:

= Avanzar todos los RPGs que se encuentran en vuelo. Esto no es més que intentar mover al
rpg por su ruta definida al momento de su lanzamiento, validando que no se encuentra con
un player o con una pared en estas nuevas posiciones. En caso de colisionar se ejecuta la
explosion.

18

Wolfenstein - 3D Taller de programacion - FIUBA

= Intentar cerrar todas las puertas abiertas. Las puertas se cierran cada aproximadamente 6
segundos; pero si al momento de intentar cerrarse hay un jugador en la zona, se cancela el
cerrado y se deja pendiente para el préximo paso del tiempo.

5. Cliente

El Cliente es el médulo encargado de la comunicacién més cercana con el usuario, tanto reci-
biendo el input del mismo a lo largo de todo el juego y traduciéndolo para que el Servidor genere
las acciones de juego correspondientes, como siendo el encargado de renderizar constantemente la
pantalla del juego para que el usuario pueda ver lo que esta pasando. De esta manera, se puede
dividir al Cliente en tres secciones diferenciadas:

= Las clases encargadas de procesar los eventos generados por el usuario y los cambios recibidos
desde el Servidor como consecuencia de estos eventos.

= Las clases encargadas de renderizar la pantalla del jugador, baséndose en la técnica de Ray
Casting (resumida maés adelante).

= Las clases encargadas propiamente de comunicarse con el Servidor, enviando eventos y reci-
biendo cambios constantemente.

A continuacion, se da una vista a alto nivel de los tres grupos de clases, a través de un Diagrama
de Clases.

19

Wolfenstein - 3D

Taller de programacion - FIUBA

GameScreen

- ClientMap& map

- SdiWindow window

- ClientPlayer& player

- ObjectinfoProvider provider

- TextureManager&: text_man

render()
¥ ¥ ¥ v
RayCaster ObjectDrawer WeaponDrawer UlDrawver
- SdiWindow& window - SdIWindows. window - SdiWindowé window - SdIWindows. window
- ClientMapé& map - ClientMapé map - ObjectinfoProvider& provider | | - ObjectinfoProvider& pri
- ObjectInfoProvider& provider - ObjectinfoProvider& provider + renderPlayerWeapon() + renderUl()
- TextureManager& text_man - TextureManager& text_man
+ renderBackground() + renderObjects()
RayCasterDrawingAssistant ObjectDrawingAssistant
- SdIWindows: window - SdIWindows& window
- TextureManager& text_man ---1 - ClientMap&: map
- ObjectinfoProvider& provider i - ObjectinfoProvider& provider
+ putWall() E + put3DObject()
+ putFloorAndCeiling()
T T — ;
P b ::::::::::::::::::'__: E i E
o . N
vy ¥ ¥y ¥ LA]
Objectinfo Area TextureManager
int object_type int x_pos - vector<SdiTexture*> textures
int hit_distance int y_pos + getTexture()
int hit_grid_pos int width
int height

Diagrama de clases: renderizacién de pantalla

20

Wolfenstein - 3D Taller de programacion - FIUBA

ClientGame

BlockingQueue<Event> event_gueue

- SharedQueue<Change> change_gueue

l + startGame()

OffGameHandler

- bool& skip_stats

- hool game_started

InGameChangeProcessor

- bool player_ready
InGameEventGenerator

- SharingQueue<Change> change_queue

- bool server_down
- BlockingQueue<Event> event_queue

- bool& player_alive

+ handleOffGame()
- bool& player_alive

- bool& skip_stats

- bool& game_started
- bool& game_started

- ClientPlayer& player
- ClientPlayer& player

+ generatelnGameEvents()

+ processinGameChanges()

OffGameChangeProcessor
OffGameEventGenerator - SharingQueue<Change>& change_queug
- BlockingQueue<Event> event_queue - bool& server_down
- ClientPlayer& player - bool& game_started
+ generateReadyEvent() - boolé& player_ready InGameEventHandler
+ processOfiGameChanges() - SharingQueue<Change> change_queue
+ handlePlayerCameraTurn()
Diagrama de clases: eventos y cambios
Thread

std::thread thread

+ start()

+ runf)

+ stop()

SharedQueue l l BlockingQueue
std::queue<Change> Server Listener Server Updater std::queue<Change>
+ push() + runf) +run() *+pop()
+pop() + push()

ChangeFactory -
NetworkConnection
+ createChangeFromBytes
g ytes() +re)
»| + send() 3
+ close()

Diagrama de clases: comunicacién con el Servidor

21

Wolfenstein - 3D Taller de programacion - FIUBA

5.1. Threads y comunicacién con el servidor

e |0 CKiNgEvVeENtQueue

e o T Em Em Em o o o ., — o o
! 1 ’ \] \
1 1 I Poll SDL Events 1 1 1
1 I 1 1 I ServerUpdater 1
1 1 1 1 1 et 1
socke!
| I 1 EventGenerator 1 1 1
! v [1 1 I [
| recv I | l l I
1 socket 1 1 ChangeProccesoor 1 i 1
1 1 1 1 1 1
I |ServerListener| 1 1 1 1
I 1 1 Proccess - Render 1 i send I

- e e - -

’
,
~

- e o ==

N e e e e === P

NonBlockingEventQueue

Diagrama general de threads del Cliente

Esta tarea es llevada a cabo por dos threads, uno que le envia Events en forma de mensajes
constantemente (Server Updater) y otro que recibe cambios procesados por el Servidor (Server
Listener). Ambos cuentan con una referencia a un socket y a una de dos colas, cuyo dueiio es la
clase Client La principal diferencia entre ambos threads, es que mientras que el Server Listener
queda bloqueado recibiendo un mensaje del Socket, el Server Updater queda bloqueado en la
funcion pop de la Blocking Queue.

5.2. Renderizaciéon en pantalla
5.2.1. Introduccién

Wolfenstein 1992 es un juego que utiliza una técnica conocida como Ray Casting para traducir
un mapa en dos dimensiones (ancho y largo) en una pantalla que simula ser 3D, ya que permite
al usuario sentir una sensacién de profundidad a lo largo de la partida. Esta técnica, utilizada
por primera vez en 1985 en el juego Alternate Reality: The City, consiste en, tomando al jugador
como un punto en un mapa de dos dimensiones, lanzar a partir de su posicién, y dependiendo
del angulo en el que mire, una serie de rayos (el nimero de rayos varia segin la implementacion)
los cuales le permiten al jugador conocer la distancia exacta de las paredes o puertas (elementos
del entorno) que tenga més cerca. Conociendo el angulo y la distancia a la que se encuentra una
pared, se puede dibujar la misma en la pantalla de manera de simular una visién 3D del jugador.

5.2.2. Proceso de renderizacion del entorno del jugador

El siguiente diagrama de secuencia muestra a muy alto nivel el proceso de renderizacion de las
paredes o puertas que conforman el entorno del jugador, para una posiciéon y angulo determinados.

22

Wolfenstein - 3D Taller de programacion - FIUBA

Renderizacion de objetos

GameScreen

| ObjectDrawer | ClientMap

| ObjectDrawingAssistant ‘ TextureManager || SdlTexture |

|
renderObjects(x, y, angle) |
»

getAllobjects()

|
]
|
!
|
|
ettt el 1
L

devuelve objetos, enemigos y efectos presentes Iﬁ

|
| sortObjects(furtherToCloser)

| isInsidePlayersFOV(object)

|

|

|

|

|

|

|

I 1
loop [for object IN objects] |
|

|

|

|

| . : |
| isBlockedBywall(object, wall_distance_info) |
|

|

1
renderObject(object_info)

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
l
|
|
|
|
|
|
|
|
|
|
5
>
|
|

assembleScreenArea()

|
\
|
\
\
|
\
|
|
\
|
|
\
|
|
\
|
|
|
\
\
|
\
\
\
\
|
\
|
|
\
\
\
o
=1
|

|
| getTextureForObject(object_type)
[
|

SdITexture texture

i

render(screen_area)
|

A

Diagrama de secuencia: generacién y envio de eventos

Sobre las clases que participan en esta secuencia:

Ray Caster:

Es la clase principal en la renderizacién del entorno del jugador. A partir de una posiciéon
*Ex*FE una posicion **y** y un determinado dngulo, se encarga de mostrar las paredes y/o
puertas méas cercanas al jugador. No se encarga de la renderizacién de objetos presentes
en el mapa, aunque guarda en un diccionario <angulo, distancia>la distancia mas cercana
obtenida para cada angulo, la cual serd importante para la clase encargada de renderizar

objetos.

Ray Casting Drawing Assistant:

Se encarga de renderizar propiamente las texturas en la pantalla. El RayCaster encuentra,
para cada angulo, la informacién necesaria (distancia, tipo de objeto encontrado, posicion
relativa en la que el rayo choco con ese objeto) y se la transfiere al Assistant a través de la
clase ObjectInfo. Esta clase puede, a partir de esos datos, obtener la posicion y dimensiones
de pantalla en la que debera dibujar tanto la pared como el suelo y el techo. Para conseguir
la textura correspondiente, el Assistant recurre al TextureManager, quien, a partir del tipo
de objeto, puede devolverle la SdlTexture (wrapper para SDL_Texture, propia de la libreria
SDL), quien puede dibujarse a si misma en pantalla.

Object Info:

Contiene toda la informacion necesaria sobre un objeto, desde el tipo de objeto y la ruta de su
imagen, hasta sus dimensiones en el mapa. También puede guardar informacién contextual,
como la distancia y posicion relativa en la que un rayo la encontré (que varfan segin la
posicion y angulo del jugador).

Client Map:
Es una clase relativamente central del Cliente, y que es muy utilizada tanto por el RayCaster

23

Wolfenstein - 3D Taller de programacion - FIUBA

como por el ObjectDrawer. El RayCaster le consulta continuamente, para cada rayo, si en
una determinada posicién existe o no una pared o puerta. También necesita consultarle si
un rayo estd o no dentro del rango del mapa, ya que utiliza esta respuesta como condicién
de corte al lanzamiento de cada rayo.

5.2.3. Proceso de renderizacion de objetos en el mapa

El siguiente diagrama de secuencia muestra a muy alto nivel el proceso de renderizaciéon de los
objetos presentes en el mapa, para una posiciéon y dngulo determinados.

Manejo de envio de eventos al Server

| ClientGame

InGameEventGenerator | | SDL_Event | | BlockingQueue

Event

ServerUpdater | NetworkConnection

generateinGameEvents() _|
»

generatelnGameEvent(sdl_event)
I;

[
|

Event event
F-mm
l‘____\

push(event)

[[
| |
[[
\ [
| |
[[
[[
[[
[[
| |
[[
[[
| |
[[
[[
[[
N [
gl |
[[
[
|
[

|
| serialize()

| |
us\nng serialized_event]
|

send(serialized_event)

T

|

|

|

|

|

|

|

|

| |

| |

| |

| |

| |

| |

| |

| | |
| | |
T T I
: : — PO :
		1	

Diagrama de secuencia: generacion y envio de eventos

Sobre las clases que participan en esta secuencia:

Object Drawer:

Es la clase principal en la renderizacion de objetos. Le solicita al ClientMap todos sus objetos
(entre los cuales se incluyen objetos propiamente dichos, enemigos y efectos (un misil, una
explosion o un efecto de sangre). A partir de una posicion x, una posicion y, y un determinado
angulo, verifica qué objetos deben mostrarse (solo aquellos que entren en el angulo de vision
del jugador y que no estén bloqueados por una pared). Para estos objetos, calcula la distancia
y el dngulo relativo al jugador en el que se encuentran, y delega al ObjectDrawingAssistant
la responsabilidad de dibujarlos en la pantalla.

Object Drawing Assistant:

De forma analoga al RayCastingDrawingAssistant, se encarga de renderizar los objetos en
la pantalla, también a partir de informacién contenida en un objeto ObjectInfo. Calcula en
qué parte de la pantalla debe dibujar el objeto, pide la SdlTexture a TextureManager, y
simplemente lo renderiza.

Client Map:
En este caso, su rol es mucho més limitado, ya que solamente es utilizado por el ObjectDrawer
para obtener la lista de objetos presentes.

5.2.4. Renderizacion del arma del jugador

Es un proceso mucho més simple que los anteriores, ya que es simplemente dibujar la textura del

arma

del jugador en la pantalla. La GameScreen le indica al WeaponDrawer tanto cudl es el arma

24

Wolfenstein - 3D Taller de programacion - FIUBA

que tiene el jugador como la animacion actual que debe mostrar (la animacion varia dependiendo
de si el jugador esta o no disparando el arma). El WeaponDrawer utiliza al TextureManager para
obtener la imagen adecuada y simplemente la renderiza en la pantalla, con un tamano prefijado.

5.2.5. UI del jugador

Al igual que la renderizacion del arma del jugador, es un proceso simple y principalmente
harcodeado, ya que se divide a la pantalla en 7 secciones, y en cada una de ellas se muestra un
valor correspondiente al jugador. Recibe de la GameScreen la proporciéon de la vida actual del
jugador con respecto a la inicial, para saber qué animacién debe mostrar para la cara del jugador
(que varia segtn su vida).

5.3. Generacion de eventos y procesamiento de cambios
5.3.1. Generacion de eventos

Las acciones del usuario (input de teclado y de mouse) generan eventos en el cliente. En primera
instancia, estos eventos son propios de SDL (SDL_Event), los cuales son traducidos en eventos
propios del codigo (Event). Estos eventos son serializados y enviados al Servidor a través del Socket
correspondiente.

Generacion de eventos

| ClientGame ServerUpdater NetworkConnection

Event |

EventGenerator | BlockingQueue

I | I

|

processinGameEvents() |
gl

.
alt 1 [switch]
|

| processinGameEvent(SDL_Event)

|
| _Event event
I I |
. _ _ _1!
i

|

|

|

|

|

|

|

|

|

|

|

|

|

t |
|
»!
»
|

|

push{event)

‘ pop()

|

| serialize()
—_—p
I

‘ . .
string event_strin
g SO EIILETG_

send(event_string)

A 4

Diagrama de secuencia: generacion y envio de eventos
Las clases que participan en esta secuencia son:

» Event Generator: Es quien lee los SDL_Event y los traduce en eventos de la clase Event.
Simplemente los encola en una BlockingQueue, y vuelve a esperar un nuevo evento.

= BlockingQueue: Es una cola bloqueante, en la cual en este caso se encolan Events.

» Server Updater: [Thread| Queda bloqueado en el método pop de la Blocking Queue. En
cuanto recibe un Event, lo serializa y lo envia al Servidor a través de la Network Connection.

25

Wolfenstein - 3D Taller de programacion - FIUBA

5.3.2. Procesamiento de cambios

Procesamiento de cambios desde el Server

update() |
T

A

(render()

A 4

ServerListener | | NetworkConnection | ChangeFactory | | SharingQueue | InGameChangeProcessor | ClientMap | | ClientPlayer | GameScreen
I I I I I 1 I I
| | | | | | | |
| receiveMessage() | | I | | | |

| | | | | |

string change string I ‘ ‘ ‘ ‘ ! !
m=f====F===2= | | | | | |

| | | | | | | |
| createFromBytes(change_string) o | | | | |
r T ! | | | | |
| Ch ! h | | | | | |
[P angechange_________ 1 I I I | |
| | | | | | | |
| | push(change) | N | | 1 |
f T t > | | | |
| | | | | | | |
[| \ le—PoR0 | [| I
		[Change change >				
		processinGameChange()	1			
I		w0	I			
		1				
!	1					

Diagrama de secuencia: procesamiento de cambios

Los eventos generados por los clientes (o por los bots) producen en el juego constantes cambios,
que son procesados por el Servidor y enviados a los clientes. El Cliente recibe estos cambios y debe
a su vez procesarlos internamente para poder informéarselos al usuario (a través de un cambio en
el Client Map, en el Client Player, en la Game Screen o en el Audio Manager).

Las clases que participan en esta secuencia son:

Server Listener: [Thread| Esta frenado recibiendo mensajes en la NetworkConnection. En
cuanto termina de recibir un mensaje, lo transforma en un cambio a través de la Change
Factory y lo encola en una Sharing Queue.

Sharing Queue: Es una cola no bloqueante, en la cual en este caso se encolan Changes.

In Game Change Processor:

Es la clase principal en el procesamiento de cambios, ya que es quien traduce un Change
en una accion del juego del cliente. Algunos cambios implican modificaciones en el mapa,
en el jugador, en la pantalla o en el audio, por lo que el In Game Change Processor cuenta
con todas estas clases como atributos (algunas como referencia, ya que también son usadas
por el Off Game Change Processor, entre otras clases). En cuanto un cambio se procesa, se
renderiza o no la pantalla de acuerdo a las modificaciones implicadas.

Client Map:

Es una clase muy importante en esta secuencia, ya que la mayoria de los cambios estan
relacionados a eventos que suceden dentro del mapa (actualizar la posicion de un enemigo,
mover al jugador, agregar un efecto).

Client Player:
Es otra clase importante, ya que se ve modificada por cualquier cambio que afecte directa-
mente al jugador.

Game Screen:

Es la clase que renderiza los cambios que se produzcan. Puede verse afectada directamente
por un cambio (por ejemplo, cuando el jugador cambia de arma), pero, incluso de no estarlo,
es la clase que le permite al usuario ver los cambios procesados.

26

Wolfenstein - 3D Taller de programacion - FIUBA

En el diagrama de secuencia de arriba, se mostré el procesamiento de un cambio genérico. A
continuacién, se mostraran ejemplos del procesamiento de algunos cambios concretos.

Ejemplo de secuencia: enemigo pierde vida

ServerListener | | Networkconnection ServerUpdater | SharedQueue | InGameChangeProcessor ClientMap | Drawable | AudioManager | GameScreen
T T T T T T T T
| I I I I 1 I I I
| recv) | I I | I | | I

» | | | | | | |
! | stiing serialized_change ! ! ! ! ! ! !
| | _Sting serialized_change) I I 1 I I I
| 1 i I I 1 I I |
| i i i i 1 i i I
T T T » I 1 I I I
| 1 I i I 1 I I |
I 1 I popQ 1 | I |
I 1 I) l 1 | I I
| 1 i i I__processChange(change) 1 I I |
I i I I I I i I
I 1 I I 1 I I I
| i i I I I I | |
| | | | | Towieh (CRANGE HEALTH €210 1= PLAVER To7] | 1 | |
| 1 I I 1 1 I I |
| | I I | » I | | |
I 1 I I ; 9) > I 1 I
| 1 i i I 1 I I |
					__getEnemyPosition(enemy_id)		
1 I I I i	I						
i				Drawable(8LOOD_EFFECT)	i		
I I I	I						
	i i		setposition(enemy_position)	i			
1 i i i I							
I I I I I 1	I I						
i 1 1	insertEffect(BLOOD_EFFECT)	1 1					
i i i i D i I							
I 1 I I I i I I I							
	I		setEnemYD)				
I I I							
I 1 I I I	I I I						
1 i i I _ratio) i I							
I I I I T T T	I						
} ! } }	_updateMandatoryRendering Tums(BLOOD_EFFECT_TURNS)	} ! }					
i		- i	i				
1 I I) 1 I I I							
I I I	1						
1 1 1 se asegura de renderizar la pantalla para mostrar la sangre							
I I I i I i							
I I I I i I I I							
1	I L render() I	»					
I i i i i i							
I 1 I I I) R I I							
1 I I T > I I							
I I I	1						
H 1		updateEffects()	\				
1 i i i e I I I							
I I I I I i I I I							
! ! ! ! ! T ! ! !							
I 1 I I I 1 I I I							
					_reduceEffectDuration(1)		
I I I	i						
I 1 I I I I I I							
1 i i i : I I							
I I I I I 1 I	I						
I 1 I I] I] I]							
i i i i 1 i I							

Diagrama general de threads del Cliente

27

Wolfenstein - 3D Taller de programacion - FIUBA

Ejemplo de secuencia: muerte del jugador

ServerListener NetworkConnection ServerUpdater

| SharedQueue || InGameChangeProcessor

1 1 !
| I |
recv() | |

> |

| . . |
L string serialized_change N

|

|

|

| |
| |
| | | |
| | push(change) I |
I T T 1 |
		popQ)		
	I I	processChange(change) I		
			!	
			alt Tswitch (KILL PLAYER & ID == PLAYER 1D)]	
I ! ! ! ! renderDeadScreen()				
			b »	
				player_alive = false
			I	
			+ +	
recv()				
ql | | | |

I : :		!	
	_string serialized_change >		
	push(change)	o	!
! T T 1			
I		!	
I	I l— P00 I		
			! !
			alt__J [switch (CHANGE)]]
I		1	
!	I !	renderDeadScreen() J	
1		t >	
I		!	
			1
			+ +
I		!	
} : } } H cuando el jugador muere, la mayoria de los cambios (no todos) no se procesa b	}		
I		!	
			1 l

Ejemplo de secuencia: muerte del jugador
ServerListener NetworkConnection ServerUpdater | SharedQueue | | InGameChangeProcessor

I
|
recv() | |
|
|

I

|

|

|

erialized_change }
|

|

|
| »
|
| push(change)
r =1
| |
| popQ
| | !
| | | processChange(change)
| |
| |
| | I
| | alt] [switch (KILL_PLAYER && ID == PLAYER _ID)]
| | 1
} } ! renderDeadScreen() o
b >
| | !
| | | player_alive = false
| | I
| |
| | 4
| | !
| |
| 1
| !
| |
| 1
push(change) o |
gl 1
| !
¢ pop()

|
| processChange(change)

Il
alt [switch (CHANGE)]

renderDeadScreen()

A4

processDeadPlayerChanges()

1l

cuando el jugador muere, la mayoria de los cambios (no todos) no se procesa BI

—_—————1

28

Wolfenstein - 3D Taller de programacion - FIUBA

Ejemplo de secuencia: enemigo respawnea

ServerListener || NetworkConnection | | ServerUpdater | | SharedQueue || InGameChangeProcessor - | Gamescren | | Drawable(enemy)
T T T T T
| | | I I
| recv() | | | I

> I | |
1 | I I
| _stiing serialized_change I |
I |
| I
il |
I I
PopO.
I |
|

processChange(change)

I
it Towitch (PLAYER RESPAWN &4 1D 1= PLAYER 1D

_id)

setDyingAnimationForEnemy(enemy_id)

-y

iU

|
|
|
|
|
} addEnemyToRespawningEnemiesVector()
|
|
|

updateMandatoryRenderingTurms(ENEMY_DEATH_TURNS)

getEnemyD /_id)

|
H se asegura de mostrar al enemigo muerto H
I
1 N
I]
| render) |
I T
! updateEvents() !
I]
| | updateRespawnedEnemies()
|
|
H
! oo Tror ey s et
|]
} | updateMapPosition(respawn_position_for_enemy)
} : p ﬂVINGiAINIMATION)
I]]
| T T
' : :
| I I
|] 1
I I 1
.
5.4. Estados del juego
r
J[-_-,\J’e
.
"o,
i
S
Player received D from Server iy,
Y PLAYER 3

READY

FLAYER
QUITTED/

PlayerQuits / Connection Lost

PLAYER
DEAD
PlayerQuits / Connection Lost O

Estados del juego

5.5. Renderizado del audio

Para renderizar el audio del juego se utilizan principalmente dos clases:

29

Wolfenstein - 3D

Taller de programacion - FIUBA

AudioManager

displayEnemyDying(distance_ratio)

displayEnemyDying(distance_ratic)

playVictorySong()

playGameSong()

L J

SdlAudioPlayer

playSound(volume_ratio)

playMusic()

setVolume(volume)

Diagrama de clases: reproducciéon de audio

» Sdl Audio Player: es una especie de wrapper directo que utiliza métodos de SDL_Mixer,
clase propia de la libreria SDL.

= Audio Manager: es la clase utilizada tanto por Client Game como por In Game Change
Processor para renderizar el audio, y la cual tiene instanciada un Sdl Audio Player.

A continuacion, se muestra con mas detalle el proceso de reproducir un sonido durante el juego.

Ejemplo de secuencia: secuencia de audio

InGameChangeProcessor

ClientMap

AudioManager

I
|
| processChange(change) |
|
|

SdlAudioPlayer

|
alt J stitt‘.h (CHANGE_HEALTH && ID !=

| getEnemyDistanceRatio() __|

™

PLAYER_ID)]

[1
| |
| |
| |
| |
| 1
| |
| |
| |
| |
| |
L4. enemy_distance_ratio | |
I | | |
| getEnemyType() ! | |
I > | |
I | | |
enem e

lg____&nem y.ype | I [
| | | |
alt J [enemy type = human] I ! I
| | | |
I | | |
| displayHumanGettingHit(distance_ratio) o |
| I "l I
: : ! displaySound(ENEMY_HIT, distance_ratio) __!
I Lt
] |] |
| | | |
alt [enemy_type = dog] I I T
| | |
. L . | |
displayDogGettingHit(distance_ratio) o |

Ll
| |
! displaySound(DOG_HIT, distance_ratio) ._!
f Ll
|]
| |
[|
| |
| !

30

	Requerimientos de software
	Bibliotecas utilizadas
	Bibliotecas básicas
	SDL2 y sus derivados de imágen, sonido y texto
	Bot con IA - Lua
	YAML
	Editor y menú del Cliente - QT5

	Compilación y ejecución
	Server
	Instalación y ejecución mediante paquete deb
	Instalación y ejecución mediante compilación manual

	Cliente
	Instalación y ejecución mediante paquete deb
	Instalación y ejecución mediante compilación manual

	Editor
	Instalación y ejecución mediante paquete deb
	Instalación y ejecución mediante compilación manual

	Formato de los mapas YAML

	Empaquetado de los módulos
	Servidor
	Cliente
	Editor

	Servidor
	Manejo de multiples partidas
	Comunicación con clientes
	Protocolo de envio de información

	Lógica de Disparo
	Lógica de apertura de puertas/paredes falsas
	Lógica del paso del tiempo

	Cliente
	Threads y comunicación con el servidor
	Renderización en pantalla
	Introducción
	Proceso de renderización del entorno del jugador
	Proceso de renderización de objetos en el mapa
	Renderización del arma del jugador
	UI del jugador

	Generación de eventos y procesamiento de cambios
	Generación de eventos
	Procesamiento de cambios

	Estados del juego
	Renderizado del audio

