? FACULTAD
‘ DE INGENIERIA

Universidad de Buenos Aires

Wolfenstein 3D
Manual de Proyecto

|75.42] Taller de programacion
Segundo cuatrimestre de 2020
Repositorio en Github
Grupo 8

BERTOLOTTO, Francisco | fbertolotto@fi.uba.ar | 102671

LOPEZ NUNEZ, Agustin | alopezn@fi.uba.ar 101826

SANTONI, Mauro msantoni@fi.uba.ar | 102654

FERNANDEZ, Andrés andyfer@fi.uba.ar 102220



https://github.com/mjsantoni/taller_wolfenstein3D/

Wolfenstein - 3D Taller de programacion - FIUBA

Indice

1. Divisién de tareas
1.1. Mauro Santoni y Francisco Bertolotto . . . . . . ... .. ... ... ... ..
1.2. Andrés Fernandez . . . . . . . . . . . ...
1.3. Agustin Lopez Nufiez . . . . . . . . . . L e

NN

2. Evoluciéon del proyecto 3
3. Inconvenientes encontrados 3
4. Analisis de puntos pendientes 4

5. Herramientas utilizadas
5.0.1. Control de Versiéon - Github . . . . . .. ... ... .. ... ... ...,
5.0.2. Compilacion - G+ . . . . . ..
5.0.3. Graficos . . . . . . . ..
5.04. Audio . . . . . .. e
5.0.5. Debugging. . . . . . . .. L
5.0.6. Google Cloud . . . . . . . . .. . e

CUB B A R R

6. Conclusiones
6.1. Servidor . . . . . . ..
6.2. Cliente . . . . . . . . . e e
6.3. Editor . . . . . . .
6.4. General . . . . . . . .

ot ov ot ot Ot




Wolfenstein - 3D Taller de programacion - FIUBA

1.

1.1.

Division de tareas

Servidor: Logica general del modelo y del servidor. Implementacion de TA en Lua. Imple-
mentacién de protocolos y elementos necesarios para la comunicaciéon. -> Mauro Santoni
y Francisco Bertolotto.

Cliente: Logica general del cliente. Implementacion de motor grafico Ray Casting. Comu-
nicacion con el servidor. -> Andrés Fernandez.

Editor: Implementacién completa del editor de mapas y el menu de configuracion. -> Agus-

tin Lopez Nunez.

Mauro Santoni y Francisco Bertolotto

Diseno e implementacion de la logica general del juego.
Manejo integral del servidor en su totalidad.
Implementacion de protocolos de comunicacion.
Implementaciéon de TA en Lua.

API para la comunicaciéon del juego con los Bots.
Diseno de concurrencia en la ejecucion de tareas.

Comunicacion con clientes.

Andrés Fernandez
Implementacion del modelo de clientes.
Implementacion del motor grafico Ray Casting.
Implementacion de la renderizaciéon de objetos en el mapa.
Renderizacion de HUD y apartados de la interfaz de usuario.
Renderizacion del audio del juego.

Comunicacion con el Servidor a través de threads.

Agustin Lopez Nunez
Disenio principal del editor utilizando Qt Designer.

Implementacion de comportamiento de todos los componentes pertinentes al editor (botones,
grillas, menus, etc).

Disefio del formato del mapa en formato YAML.

Diseno del menu de conexién previo al juego y su comunicacién con el server.




Wolfenstein - 3D Taller de programacion - FIUBA

2.

Evolucién del proyecto

Semana 1: Maquetacion bésica del editor en QT Designer. Diseno e implementaciéon de
carga de mapa a través de parseo con YAML. Ray Caster de paredes con texturas basicas.
Parseo correcto del YAML.

Semana 2: Aplicacién basica de edicion de mapas, con una grilla de botones que permiten
agregar texturas al mapa. Logica de movimiento y disparo. Procesamiento del disparo. Pickup
de items. Agregado de configuraciones por archivo YAML.

Semana 3: Creacion de botonera de texturas en el editor que permiten funcionalidad point
and click y drag and drop para carga de mapas. Implementacion de threads sobre el servidor,

finalizacion de logica de juego con elementos que se mueven y/o desaparecen como puertas,
RPG, paredes.

Semana 4: Se agrega la posibilidad de scroll del mapa en el editor al ser grande la grilla y
funcionalidad de point and click con click derecho. Implementacién de IA en Lua. Sistema
de comunicacion cliente-servidor.

Semana 5: Integracion de cliente y servidor. Resolucion de problemas de concurrencia en
ambos planos. Mejoras sobre Ray Casting. Se permite resetear el cursor y mejoras sobre el
editor. Mejoras en la estabilidad del servidor.

Semana 6: Se comienza nuevo mend inicial en QT. Finalizacion de requisitos faltantes.

Semana 7: Men inicial completo, permitiendo configuracién previa. Mejoras en la estabi-
lidad y rendimiento del cliente y servidor. Correcion de bugs.

Inconvenientes encontrados

Correcta instalacion y posterior funcionamiento de la libreria de parseo YAML. Esto derivo
en la decisién de incluirla como parte del repositorio y paquete.

Desarrollo de bot en Lua, principalmente por ser un lenguaje nuevo para los integrantes.
Problemas de race conditions con el bot.

Por el lado del Ray casting, su implementacion fue compleja, especialmente la visualizacion
de los objetos en un tamano acorde. La falta de informacion sobre como dibujar sprites en
este tipo de técnica, en comparacion con la que hay sobre Raycasting, terminé volviendo a
este apartado la parte mas dificil del desarrollo del Cliente.

Lograr estabilidad a lo largo de varios threads, ya que algunos mantienen sockets y otros
logica de juego.

Data races a causa de las librerias graficas que escapan a los integrantes, mas especificamente
debidas a QT y a SDL.

Mejor manejo de rutas para facilitar la ejecuciéon mediante instalacion manual o mediante
paquete.

Generacion de archivo de configuraciones para ser modificado en una carpeta sin permisos
de root.

Recibir cambios de alguien que ya no tiene mas vidas. Como existe una pequena latencia
entre lo que ve el cliente y lo que esta pasando, a veces ocurria que el cliente enviaba un
disparo cuando en ese mismo instante moria; esto generaba problemas ya que estidbamos
procesando cambios de alguien "muerto".




Wolfenstein - 3D Taller de programacion - FIUBA

4. Analisis de puntos pendientes
= Mis tipos de bots disponibles para jugar.
= Mis tipos de shortcuts para facilitar la creacién de mapas.
= Posibilidad de soportar multiples teclas presionadas al mismo tiempo.
» Renderizacion de sprites columna a columna (evita superposicion en casos borde).
= Mayor variedad de sprites y texturas.
= Subir archivo deb a un repositorio PPA para su facil acceso.
= Mejor uso de excepciones (en los tres modulos).
= Resize del mapa del editor hacia abajo del default.

= Mejoras visuales del editor.

5. Herramientas utilizadas

5.0.1. Control de Version - Github

Se opto por Github por la familiriadad de todos los integrantes con la plataforma.

5.0.2. Compilaciéon - G++

Para compilar el proyecto se utilizo g++ con estandar C++11.

5.0.3. Graficos

= SDL2: Se utilizaron librerias de SDL2 para todo lo referido a renderizacion de texturas y
sprites (SDL_Image) durante el desarrollo del juego. También se us6 para ments y pantallas
con mensajes (SDL_TTF).

= QT5: Se utilizo principalmente para los menus principales y para el editor en su totalidad.

5.0.4. Audio

SDL2: Para la reproduccion de musica y sonidos durante el juego, se utilizo la libreria SDL2
(SDL2_Mixer).

5.0.5. Debugging

= CMake - Clion: Para la facil generacion de ejecutables se utilizaron diversos CMake, esto
junto con CLion permitié un facil acceso al proceso de compilar y testear.

= Netcat: Se utilizo para pruebas simple de validacién de envid y recepciéon de bytes.
= Valgrind: Se utilizo para verificar las perdidas de memoria.

= Callgreen: Se utilizo para analizar el comparta miento del programa, que funciones se
llaman mas y cuales tardan mas.

= Kcachegrind: Se utilizo para observar graficamente los resultados obtenidos por Callgreen.

= Tsan: Se utilizo para buscar y eliminar posibles race condition en la ejecuciéon del programa.




Wolfenstein - 3D Taller de programacion - FIUBA

5.0.6. Google Cloud

Para probar la estabilidad en general se hosteo el servidor en una maquina provista por el
servicio de Google Cloud. Esto permiti6 el correcto testeo de las funcionalidades online.

6. Conclusiones

6.1. Servidor

El manejo de multiples threads de forma ordenada y evitando race conditions, fue sin duda un
desafio importante, teniendo en cuenta que a los threads propios dedicados al funcionamiento del
Servidor, se suman los threads de cada cliente, y todos comparten un tnico socket.

La integracion del bot de LUA también fue un punto complicado, ya que es una libreria
relativamente complicada de utilizar de forma correcta, y a la cual habia que adaptar a una légica
de TA que de por si era bastante compleja.

Sentimos que la implementacion de los mecanismos de comunicacion con el cliente (incluyendo
las colas bloqueante y no bloqueante), los Cambios enviados por el Servidor, los Eventos enviados
por el Cliente, y la Network Connection que representa al socket, fueron ideadas de forma correcta
y no tuvimos complicaciones relativas al funcionamiento de estas clases.

6.2. Cliente

Sin lugar a dudas, la parte mas desafiante del trabajo préactico fue la renderizacion de objetos
en pantalla de forma correcta. La técnica de Ray Casting tiene sus complicaciones, pero al existir
una buena cantidad de informacién sobre el tema en Internet, esta parte del trabajo se volvid
bastante mas facil.

En cambio, para dibujar los sprites en el suelo de forma correcta, sin que los objetos se muevan
de forma extrafia o se agranden o achiquen demasiado de acuerdo a la distancia, se volvié un
trabajo mucho maés dificil. Casi no hay material disponible sobre esto, y se intentaron formular
muchas soluciones hasta hallar la correcta, lo que retrasoé el trabajo practico en general, ya que la
correcta renderizacion de objetos es una herramienta de debug tanto del Cliente como del Servidor.

La comunicacién con el Servidor fue formulada principalmente del lado del Servidor, y adaptada
luego al Cliente. La reproduccién de sonidos es relativamente trivial, aunque existen algunas race
conditions cuyo origen es dificil de entender, ya que es propio de las librerfas de SDL. _Mixer.

El proyecto fue mucho mas grandes de los que habia realizado hasta el momento, fue dificil
aplicar todos los conceptos de la POO y los nuevos conceptos aprendidos en la materia (por
ejemplo, RAII) de forma ordenada y prolija.

6.3. Editor

Se obtuvo una mayor comprension de la programacion orientada a eventos debido a la necesidad
de utilizar librerias, en este caso QT, orientadas a este paradigma. La utilizacién de la herramienta
de QT designer aunque facilit6 ciertas tareas no fué del todo util para su uso con muchos Widgets
(como es el caso del ConfigChecker).

6.4. General

Como conclusion general, nos parecié un trabajo préctico realmente dificil, a cuya fecha de
entrega llegamos con los tiempos muy justos, incluso utilizando una parte del verano para avanzar
con el mismo, posibilidad que sabemos que no existe en otros cuatrimestres. Sin duda, la dificultad
en la correcta renderizacion de los objetos retrasé mas de lo esperado el proyecto, lo cual conllevd
demoras imprevistas.

Por otro lado, se consolidaron conocimientos sobre programacién general, protocolos de co-
municacion, organizacién de proyectos y herramientas pertinentes. También se aprendié sobre el




Wolfenstein - 3D Taller de programacion - FIUBA

desarrollo de un proyecto complejo en general, buenas practicas y comunicacién con otros progra-
madores. Se utilizé mucho pair programming como herramienta de debug.




	División de tareas
	Mauro Santoni y Francisco Bertolotto
	Andrés Fernández
	Agustín López Núñez

	Evolución del proyecto
	Inconvenientes encontrados
	Análisis de puntos pendientes
	Herramientas utilizadas
	Control de Versión - Github
	Compilación - G++
	Graficos
	Audio
	Debugging
	Google Cloud

	Conclusiones
	Servidor
	Cliente
	Editor
	General


